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Abstract In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth
(AOD) and AirNow PM2.5 measurements are assimilated into the Community Multi-scale Air Quality (CMAQ)
model using an optimal interpolation (OI) method. Over a 30 day test period in July 2011, three assimilation
configurations were used in which MODIS AOD and AirNow PM2.5 measurements were first assimilated
separately before being assimilated simultaneously. The background error covariance is estimated using
both the National Meteorological Center approach and the Hollingsworth-Lönnberg method. The AOD
observations from Terra are assimilated at 17Z and the Aqua AOD observations are assimilated at 20Z
each day. AirNow PM2.5 measurements are assimilated 4 times a day at 00Z, 06Z, 12Z, and 18Z. Model
performances are measured by the daily averaged and domain-averaged biases and the root-mean-square
errors (RMSEs) obtained by comparing the predictions with the AirNow PM2.5 observations that were
not assimilated. Either assimilating the MODIS AOD or assimilating the AirNow PM2.5 alone helps PM2.5

predictions over the entire 30 days. The case that assimilates the observations from both sources has the
best performance. While the CMAQ PM2.5 results exhibit exaggerated diurnal variations compared to the
AirNow measurements, this is not as severe at rural sites as at urban or suburban sites. It was also found
that assimilating the total AOD observations is more beneficial for correcting the PM2.5 underestimations
than directly assimilating the AirNow PM2.5 measurements every 6 h. While the simple approach of applying
the AOD scaling factors uniformly throughout the vertical columns proved effective, it is liable to produce
substantial errors. This is demonstrated by a high-AOD event.

1. Introduction

Fine particulate air pollution has been closely monitored worldwide due to its adverse effects, ranging from
degraded visibility or haze-fog episodes [Chow et al., 2004; Sun et al., 2006] to the severe cardiovascular and
respiratory diseases that it may cause [Schwartz and Neas, 2000; Delfino et al., 2005; Dominici et al., 2006].
In order to provide advance notice of future air pollution events, national weather services worldwide are
expanding the weather predictions to include air pollution predictions. The U.S. National Air Quality Forecast
Capability (NAQFC) provided by the National Oceanic and Atmospheric Administration (NOAA) had its PM2.5

(particulate matter with aerodynamic diameter less than or equal to 2.5μm) predictions using the Community
Multi-scale Air Quality (CMAQ) modeling system initially tested in 2006 [Gorline and Lee, 2009] and was imple-
mented to operations in 2016 [Lee et al., 2017]. While the aerosol module is being continuously updated, it is
still limited by our incomplete understanding of the aerosol chemistry and dynamics. In addition, reliance on
often-outdated emission inventories and lack of real-time emission modeling significantly restrict the NAQFC
and similar regional aerosol forecast capabilities [Tong et al., 2012].

Continuous efforts have been made to integrate aerosol observations with chemical transport models
[Carmichael et al., 2008; Sandu and Chai, 2011; Bocquet et al., 2015]. In the U.S. and Canada, hourly PM2.5

measurements at surface network stations are usually available at near-real time with high-quality and
good spatial coverage. Kang et al. [2010a, 2010b] showed promising results in improving PM2.5 predictions
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using AirNow measurements with a bias-adjustment Kalman Filter technique. Robichaud and Ménard [2014]
generated multiyear warm season surface PM2.5 analyses using the Canadian air quality forecast suite and
surface observations based on an optimal interpolation (OI) scheme. In addition to the surface network sta-
tions, Moderate Resolution Imaging Spectroradiometers (MODIS) aboard the Terra and Aqua satellites provide
near-real-time aerosol optical depth (AOD) observations with good spatial resolution and coverage [Remer
et al., 2005]. Assimilating the MODIS AOD proves to be beneficial to aerosol predictions [Adhikary et al., 2008;
Zhang et al., 2008; Liu et al., 2011; Saide et al., 2013; Pagowski et al., 2014]. Recently, Schwartz et al. [2012]
assimilated both MODIS AOD and AirNow PM2.5 simultaneously using the National Centers for Environmental
Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimi-
lation system with the Weather Research and Forecasting-Chemistry (WRF-Chem) model. They showed that
concurrent assimilation of PM2.5 and AOD observations produced the best overall forecasts.

In this study, an OI scheme is used to assimilate the AirNow PM2.5 and MODIS AOD measurements into the
NAQFC system which employs the CMAQ model. The impact of the assimilation is objectively assessed by
using the observations that are not assimilated or before they are assimilated. Tang et al. [2015] presented a
case study using the same OI data assimilation package with some modifications to assimilate AirNow ozone,
PM2.5, and MODIS AOD measurements. This paper focuses on PM2.5 only and provides more details on the
method. While Tang et al. [2015] designed four different OI cases to examine the effects of different uncertainty
setting and assimilation time, this paper tries to compare the effects of PM2.5 and MODIS AOD measurements
in the data assimilation. Some differences between the two implementations will be presented and dis-
cussed in the following sections. It is also noted that the outdated emission inventories are not updated here.
Thus, the prediction errors due to emissions will persist and the data assimilation effects could decay quickly.
Assimilating satellite data to constrain the aerosol sources has proved quite successful in various applications
[e.g., Chai et al., 2009; Kaiser et al., 2012; Xu et al., 2013; Zhang et al., 2015; Wang et al., 2016; Chai et al., 2017].
Including top-down emission inversion to improve the PM2.5 predictions will be explored in the future.

The remainder of the paper is organized as follows. The assimilation system is explained in section 2. It includes
a brief description of the NAQFC-𝛽 system, the AirNow and MODIS observations, the OI method, and the setup
of the assimilation tests. Detailed model results are presented in section 3, and section 4 provides a summary
and some discussion.

2. Description of the Assimilation System
2.1. NAQFC-𝜷 System
The experimental version of the NAQFC system (NAQFC-𝛽) used in this study is composed of a CMAQ mod-
eling system [Byun and Schere, 2006] driven by the NCEP’s North American Mesoscale (NAM) meteorological
forecasts with the Weather Research and Forecasting (WRF) Nonhydrostatic Mesoscale Model (NMM) core
[Janjic, 2003]. A preprocessor to CMAQ, PREMAQ prepares the CMAQ input files after taking in the WRF post-
processor outputs [Otte et al., 2005]. The system is identical to the Base Case described in Pan et al. [2014],
using CMAQ version 4.7.1 with the AERO-5 aerosol module [Carlton et al., 2010] and online biogenic emissions
(BEI3.13) [Schwede et al., 2005].

Figure 1 shows the computational domain, which is covered by a 442 × 265 grid with a 12 km horizontal
resolution following a Lambert conformal conic (LCC) projection. There are 22 vertical layers extending from
the surface to 100 hPa, with a hybrid pressure/sigma coordinate that is the same as that of the WRF-NMM
model (see Lee and Ngan [2011] for details). A zero-flux assumption at the top boundary is made in the CMAQ
computation. The other details of the NAQFC-𝛽 system can be found in earlier publications [Chai et al., 2013;
Pan et al., 2014].

2.2. MODIS AOD Observations
Level-2 MODIS AOD at 550 nm from Collection 051 with the best quality (Quality flag= 3) are used in this study
[Levy et al., 2009]. They include both ocean and land products (MOD04 and MYD04) with up to 10 × 10 km
horizontal resolution from Terra and Aqua platforms, which pass over the equator at around 10:30 and 13:30 LT,
respectively. The total AOD is read from the database and then regridded into the target domain. The average
AOD values of the pixels inside each grid cell are taken as the observation input to be compared with their
model equivalents.

Zhang and Reid [2006] and Hyer et al. [2011] evaluated the MODIS Collection 5 optical depth retrievals and
developed an empirical quality control and assurance procedure to filter and correct the AOD data. However,
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Figure 1. The NAQFC computational domain and the six predefined U.S. regions, i.e., Pacific Coast (PC), Rocky Mountain
(RM), Southeast (SE), Lower Middle (LM), Upper Middle (UM), and Northeast (NE). The 672 AirNow stations that reported
PM2.5 measurements over the contiguous United States (CONUS) are also marked.

such extra screening and correction might not be critical for the Collection 6 MODIS aerosol products which
had changes to both “upstream” and retrieval algorithms albeit not a major overhaul [Levy et al., 2013]. In
this study, the MODIS AOD data from Collection 051 were used, similar as in Tang et al. [2015]. A comparison
of the July 2011 AOD data in our computational domain between the Collection 051 and the Collection 6
shows good agreement and no severe bias, with the linear regression slopes of Collection 6 over Collection
051 as 1.01 and 0.98 for Terra and Aqua, respectively. In addition, both the Collection 051 and the Collection
6 AOD data are compared with the collocated AOD data from 77 AERONET sites at 0.5 μm [Holben et al., 1998]
for the entire month. The Collection 6 data yield a better correlation with the AERONET data (r = 0.91) than
the Collection 5.1 data (r = 0.79). However, the Collection 6 data show a higher mean bias (0.03) than the
Collection 5.1 data (−0.01) when compared with the AERONET AOD data. Drury et al. [2008] and Wang et al.
[2010] presented improved algorithms for MODIS satellite retrievals of AODs. Nonetheless, the Collection 6
MODIS data will be used in the future and necessary quality assurance and quality control procedure should
be applied as well.

Note that the MODIS AOD fine-mode fraction parameters can be applied to the original total AOD to
get fine-mode AOD values. However, spatial coverage decreases as the fine-mode fraction parameters are
not always available. Chai et al. [2014] demonstrated that assimilating the total AOD performs better than
assimilating the fine-mode AOD. Only total AOD values are used in the following tests in this paper.

The CMAQ counterparts of the total AOD are calculated by integrating the hourly extinction coefficients over
the whole vertical columns. In CMAQ, the extinction coefficients can be calculated from the Mie theory or
using the mass reconstruction method [Mebust et al., 2003]. The AOD results from the two methods are quite
similar. We chose to use the mass reconstruction method.

2.3. AirNow PM2.5 Measurements
Near-real-time ozone and PM2.5 measurements are provided by the U.S. EPA AirNow program (http://
airnowapi.org). The measurements then go through quality control and assurance and are made available
through the Air Quality System (AQS) but at a much later time. Since improving PM2.5 forecasts is a major
goal here, the AQS data are not suitable here due to their late availability. Figure 1 shows the distribution of
the 672 AirNow stations that reported PM2.5 measurements over the contiguous United States (CONUS) in
July 2011. When comparing model predictions with AirNow PM2.5 observations, the aerosol components of
Aitken and accumulation modes at the monitor-residing grid cells were added to construct the CMAQ PM2.5.
While 672 AirNow stations reside in 632 grid cells, 28 grid cells have two to five monitors in them. During the
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assimilation, only one measurement is used without preference for grid cells where there are two or more valid
observations. However, all the measurements are compared against the model predictions when calculating
the model performance statistics.

2.4. Optimal Interpolation
A simple data assimilation scheme, optimal interpolation (OI), is chosen to assimilate observations into the
CMAQ chemical transport model (CTM). In OI, analysis is obtained by directly solving equation (1),

Xa = Xb + BHT (HBHT + O
)−1 (

Y − HXb) , (1)

where X and Y are state and observation vectors, respectively. B and O are background and observation
error-covariance matrices. H is a linearized observational operator. Superscripts a and b indicate analysis and
background states, respectively. Observations beyond the background-error correlation length scale have no
effect in the analysis.

Rather than directly solving equation (1), we choose to apply the optimal interpolation (OI) in an alternative
format,

H′Xa = H′Xb + H′BHT (HBHT + O
)−1 (

Y − HXb) . (2)

With H′ representing transformation of variable for 𝜏 (AOD) or PM2.5 for the whole domain, H′Xa and H′Xb can
be written as 𝝉a and 𝝉b or PMa

2.5 and PMb
2.5. HBHT becomes background error statistics for 𝝉 or PM2.5 at obser-

vation locations. While the MODIS observation time can vary up to 5 h between the East Coast and the West
Coast, the daily data are assimilated at the approximate midpoints of the daily scanning over the CONUS, at
17Z for Terra and at 20Z for Aqua. This is mainly to reduce the frequency of analysis operation when the model
has to stop to inject data. Schwartz et al. [2012] assimilated AOD data at 18Z and 0Z using data within 3 h for a
similar CONUS domain. Tang et al. [2015] assimilated the Terra and Aqua data over the CONUS domain at 17Z
and 19Z, respectively. The 𝜏a

𝜏b at each grid point is used to scale all aerosol components throughout the verti-
cal column. It implies zero background error for the ratio between any speciated aerosol components at each
grid point and zero background error for the ratio of 𝜏 or PM2.5 between any two vertical levels at any location.
Such simplification is due to the lack of information to constrain speciated aerosol components or their ver-
tical distribution. When AirNow PM2.5 measurements are assimilated, the hourly measurements at 00Z, 06Z,
12Z, and 18Z will be input into equation (1) to generate the new analysis fields. As the measurements are
made at the surface, the scaling factors

PMa
2.5

PMb
2.5

only apply to the levels below the boundary layer top. Whenever

observations are assimilated, the state variables that comprise the aerosol in the model are adjusted from
their background to their analysis states using the scaling factors obtained following equation (2).

After assimilating the AOD or PM2.5 observations, the adjusted model state variables are then used to initiate
the CMAQ model to predict the next background state Xb in equation (1). In future real-time implementations,
the subsequent model simulation can be extended over a longer period in order to generate future forecasts.
As the forward prediction is indeed “hindcast” in this study, the term “prediction” instead of “forecast” is used
here to indicate the characteristics of the “free” runs that do not assimilate observations along the way. Note
that the background state Xb is actually a “prediction” of the previous model run before it is combined with
the newly available observation Y to generate a new analysis state Xa using equation (1).

2.5. Error Statistics
The AOD background error statistics are estimated using both the National Meteorological Center (NMC)
approach and the Hollingsworth-Lönnberg (observational) method, following Chai et al. [2007]. In the NMC
approach, 24 h average 𝜏 from 13Z 16 August to 12Z 17 August 2001 are calculated over the entire model
domain using two NAQFC CMAQ runs that were driven by two meteorological forecast fields which started
24 h apart. The differences between the two meteorological fields are caused by the assimilation of addi-
tional 24 h meteorological observations in the later run. The AOD differences are calculated at all geolocations
and are used as surrogates for model errors in the NMC approach in order to calculate the error statistics. In
Hollingsworth-Lönnberg method, the actual differences between the model predictions and the measure-
ments are calculated. In this observation-based procedure, the regridded AOD measurements are treated as
measurements from imaginary stations located at the center of each grid cell. The AOD observations are col-
lected from the Terra data from the 14–20 August 2009 period. The corresponding CMAQ 𝜏 predictions are
calculated using the mass reconstruction method based on the experimental NAQFC runs which had no AOD
or PM2.5 assimilation. The “station pairs” with valid observation pairs for more than 2 days are used to cal-
culate the covariance between the “stations.” Note that the biases need to be removed before calculating
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Figure 2. The average correlation coefficient as a function of separation distance between two grid cells for AOD from
the NMC approach and the Hollingsworth-Lönnberg method, respectively.

the covariance. Although the error statistics are more realistic, the method is limited by the availability of
observations.

To avoid storing the background error covariance matrix B, the background error covariance between any two
geolocations Pi and Pj is modeled as

COVij = 𝜖i𝜖je
−

Δij
lh (3)

where 𝜖i and 𝜖j are the standard deviations of the background errors, which are assumed to be unbiased. The
Δij is the distance between the two geolocations Pi and Pj , lh is the horizontal correlation length scale param-
eter to be estimated, and lh can be estimated using either of the two methods described above. For simplicity,
the background error correlation coefficients are assumed to be homogeneous and isotropic, and they are
further assumed to be stationary. However, the variation of 𝜖 from point to point makes the background error
covariance inhomogeneous.

Figure 2 shows the average correlation coefficient, i.e.,
COVij

𝜖i ⋅𝜖j
, as a function of the separation distance between

two grid cells from the NMC approach and the Hollingsworth-Lönnberg method, respectively. The results
from the Hollingsworth-Lönnberg method are averaged over 10 km bins. In the NMC approach, the pair-
ings are restricted to the stations along the same longitude and latitude of the computational grid, denoted
as “East-west” and “North-south,” respectively, in Figure 2. This effectively reduces the number of valid
“station pairs” from ∼6.86 × 109 to ∼2.58 × 107 and ∼1.55 × 107 for East-west and North-south pairings,
respectively, compared to 13605 valid pairs in the Hollingsworth-Lönnberg method. The large quan-
tity of samples available in the NMC approach results in much smoother curves than achieved in the
Hollingsworth-Lönnberg method. The close resemblance of the East-west and North-south results partially
validates the earlier isotropic assumption. The NMC results show a correlation length scale of ∼84 km,
which is the separation distance where the corresponding correlation coefficient falls to e−1. However, the
Hollingsworth-Lönnberg method indicates a longer correlation length scale of ∼160 km. The vertical inter-
cept Rz ≈ 0.92 atΔij = 0 for the observational method in Figure 2 indicates that the background error is much
greater than the observational error.

Using the AirNow hourly PM2.5 measurements from July 2011 and the NAQFC CMAQ predictions, the
Hollingsworth-Lönnberg method is applied within the six CONUS regions defined in Figure 1. Figure 3 shows
the correlation coefficients averaged over 10 km bins. The Lower Middle (LM) region shows the largest correla-
tion length, and the Rocky Mountain (RM) region has the shortest correlation length. The curves for the other
four regions fall in between these. They are mostly clustered together and show a length close to 100 km. In
the following assimilation tests, we chose lh = 84 km for both AOD and PM2.5. Such a conservative choice
tends to limit the effective radius of each individual observation. In addition, the standard deviation of the
background errors is assigned as 60% of the background values, while the observational errors are assumed
to be±0.04± 0.20𝜏 for AOD and±20% of the measurement values for PM2.5. Although the AOD retrievals over
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Figure 3. The average correlation coefficient as a function of separation
distance between two stations for PM2.5 using the
Hollingsworth-Lönnberg method.

ocean were shown with less uncertain-
ties (Δ𝜏 = ±0.03±0.05𝜏) than those over
the land (Δ𝜏 = ±0.05 ± 0.15𝜏) [Remer
et al., 2005], for simplicity, the assumed
Δ𝜏 = ±0.04 ± 0.20𝜏 uncertainties are
applied to all the AOD data. Note that the
observational errors here include repre-
sentative errors besides the uncertain-
ties of the AOD retrievals. Although the
AirNow PM2.5 measurement errors are
much smaller than those of the MODIS
𝜏 retrievals, comparing the in situ point
measurements with grid average con-
centrations results in larger representa-
tive errors for AirNow PM2.5.

3. Results
3.1. Assimilation Tests
As listed in Table 1, two assimilation con-
figurations, C1 and C2, were designed
to assimilate the AOD and PM2.5 obser-
vations separately. Then both the AOD
and PM2.5 observations are assimilated

in configuration C3. A baseline case without any assimilation is also included in order to evaluate the effect
of assimilation. All configurations start at 12Z on 1 July 2011. They then assimilate the observations at des-
ignated instants, running until 12Z on 31 July 2011. In the three assimilation tests, adjusted initial states are
used to run the model after each assimilation instant. The longest “free” run period is 21 h for C2 between
assimilating Aqua AOD and assimilating the Terra AOD of the next day.

Figure 4 shows the PM2.5 predictions from the baseline case (C0) and the three assimilation tests (C1–C3). Note
that Figure 4 shows PM2.5 at every hour even though C2 and C3 only assimilate the observations at 00Z, 06Z,
12Z, and 18Z. As mentioned earlier, there are two state vectors available at the instants when OI is performed:
(1) the background, that is, the “forecasts” of the previous model run and (2) the “analysis” that results from
integrating the observations with the background states. The “forecast” results are used in Figure 4 and in all
other evaluations, unless otherwise specified. The baseline case significantly underestimates PM2.5 over the
entire period. Such underestimation of PM2.5 over the CONUS by the CMAQ model during the summer months
has been well documented [Morris et al., 2005a, 2005b; Luo et al., 2011; Baek et al., 2011; Xing et al., 2015].
Using SO2−

4 , NO−
3 , NH+

4 , and EC observations from 1990 to 2010 by the U.S. CASTNET and IMPROVE networks,
Xing et al. [2015] reported that the CMAQ simulation significantly underestimated all aerosol species in sum-
mer over that 20 year period, with the normalized mean bias ranging from −28.9% to −73.5%. Assimilating
either MODIS AOD or PM2.5 helps PM2.5 predictions over the entire 30 days. Figure 4 shows that the three
assimilation tests were able to mitigate the underestimation, resulting in much better matching between the
model predictions and the AirNow observations than in the C0 case. The fact that assimilating AOD data is
more effective than assimilating AirNow observations is due to the much better spatial coverage of the satel-
lite than the ground stations which only occupy 0.54% of the grid cells at the surface. As a result, it also retains
the analysis information better. Chai et al. [2014] showed that the assimilation effect can be seen after 24 h

Table 1. Observations Assimilated at Designated Times for the Test Cases

Cases 12Z 17Z 18Z 20Z 00Za 06Za

C0 - - - - - -

C1 - Terra total AOD - Aqua total AOD - -

C2 PM2.5 - PM2.5 - PM2.5 PM2.5

C3 PM2.5 Terra total AOD PM2.5 Aqua total AOD PM2.5 PM2.5

aDenotes the next day.
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Figure 4. Time series of domain-averaged PM2.5. Hour number counting
starts from 12Z on 1 July 2011. Hour 14 is not plotted here as only seven
valid observations are available at the hour. The cutoff PM2.5
observations at hours 87–91 are 24.6, 29.1, 32.3, 25.0, and 20.6 μg/m3,
respectively.

of the assimilation when only Terra AOD
data were assimilated. Configuration
C3, in which observations are assimi-
lated from both sources, achieves the
best results. Also note that the effects
of the Independence Day fireworks
are shown by the observations but are
not reflected in any of the CMAQ tests.
Seidel and Birnbaum [2015] demon-
strated the similar effects using the AQS
PM2.5 data from 1999 to 2013 and sug-
gested future inclusion in the model of
the fireworks celebrating the 4 July as
emission sources.

Figure 4 also shows that the model
demonstrates significant diurnal pat-
terns, which were not observed at
AirNow stations. Such exaggerated
diurnal variability in the CMAQ model
has been reported in other studies

[Morris et al., 2006; McKeen et al., 2007; Djalalova et al., 2015]. McKeen et al. [2007] showed that the CMAQ
model failed to capture an observed PM2.5 decrease from 0100 to 0600 LT and speculated that its failure
indicated that the model underrepresented the aerosol loss during the late night and early morning hours.
Figure 5 shows a very similar pattern in the baseline case C0. The PM2.5 measurements by the AirNow sta-
tions show a steady decrease from 0000 to 0500 LT, but the CMAQ results in case C0 show the opposite
trend, namely, a steady increase from 0000 to 0500 LT. The model results also exhibit a significant underesti-
mation during the afternoon hours, which is speculated to be related to the underprediction of secondary
production for organic carbon in CMAQ [Doraiswamy et al., 2010; Baek et al., 2011]. Such systematic errors are
not considered in the current bias-blind data assimilation scheme. Bias-aware assimilation methods can be
designed to estimate and correct the model biases [Dee and Da Silva, 1998; Dee, 2005].

Using the local settings of the AirNow stations, domain-averaged hourly PM2.5 at urban, suburban, and rural
sites are calculated and shown in Figure 6. The time series at the urban and suburban sites are similar,

Figure 5. PM2.5 of case C0 at local hours, averaged from 12Z on 1 July to
11Z on 31 July 2011. OBS: AirNow measurements; BASE: CMAQ results of
Case C0.

resembling what is shown in Figure 4
for all stations. The rural sites are asso-
ciated with lower PM2.5 and display
much smaller diurnal variation. When
both MODIS AOD and AirNow PM2.5

are assimilated, Figure 6 shows that the
CMAQ model captures the mean PM2.5

at rural sites extremely well. It is noticed
that the diurnal variability at rural sites
is not as excessive as that at urban
or suburban sites. This may indicate
problems with the diurnal profiles of
the sources associated with the urban
and suburban settings, such as mobile
emission sources related to local traffic.
However, it might also be related to the
planetary boundary layer (PBL) height
or removal processes. Further investi-
gation is required to identify the cause
of the exaggerated diurnal variability
displayed by the model. To prevent the
diurnal patterns from playing too much
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Figure 6. Time series of mean domain-averaged hourly PM2.5 at urban,
suburban, and rural AirNow sites. Hour number counting starts from
12Z on 1 July 2011. Hour 14 is not plotted here as only seven valid
observations are available at the hour. Observations above 20 μg/m3 at
hours 86–91 for urban sites and at hours 87–91 for suburban sites are
cut off from the plots.

a role, the error statistics listed in
Tables 2–3 are based on the 24 h aver-
age PM2.5 calculated from 12Z to 11Z
to the next day. Note that 24 h average
PM2.5 is also associated with the past
and current National Ambient Air Qual-
ity Standards in the United States.

Table 2 shows the evaluation statistics
for 24 h average PM2.5 at all AirNow
sites as well as for urban, suburban, and
rural settings separately. For the test
period, the suburban sites had the high-
est mean observed PM2.5 at 12.3 μg/m3,
while the rural sites had the lowest
mean observation, at 10.0 μg/m3. Over-
all, the baseline case C0 significantly
underestimates PM2.5 regardless of the
local settings of the stations. Among
stations with different local settings,
Case C0 has the largest bias at rural sites
(−4.2μg/m3), which may be clearly seen
in Figure 6. After integrating the MODIS
AOD observations, case C1 reverses
the significant underestimation into a
slight overestimation, resulting in mean
biases ranging from 0.2 μg/m3 at both
suburban and rural sites to 0.9 μg/m3

at urban sites. Case C2, which assimi-
lates AirNow PM2.5 alone, still underes-
timates PM2.5, but the magnitudes of
the underestimation are cut by more
than a third for all three sets of the
AirNow stations. In Table 2, the PM2.5

root-mean-square error (RMSE) shows
that C2 performs better than C1. Note
that only PM2.5 observations at 00Z,
06Z, 12Z, and 18Z are assimilated in C2
and C3; the evaluations are based on
24 h average PM2.5 calculated over all
hours. In addition, the “forecast” values
rather than the “analyses” at the inte-
gration times are used in calculating the
evaluation statistics. Although assimi-
lating 𝜏 significantly improves the PM2.5

model bias, the simple treatment of
applying 𝜏 scaling factors to all aerosol
components over a whole column can-
not avoid inadvertently adjusting sur-
face PM2.5 even though MODIS AOD

measurements may only reflect aerosols at higher levels. When both MODIS AOD and AirNow surface PM2.5

are assimilated in C3, the RMSEs are further improved from C2, resulting in more than 20% reduction com-
pared to the baseline case C0 whether all stations or any of the separate sets of stations are used. Calculated
with all stations, the 24 h average PM2.5 bias reaches a minimal value of −0.1 μg/m3, indicating the benefit of
combining observations from space and surface stations.
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Table 2. Evaluation Statistics of 24 h Average PM2.5 at All Airnow Sites As Well As in Urban, Suburban, and Rural Settings
Separatelya

Mean (μg/m3) Bias (μg/m3) RMSE (μg/m3)

Local Setting OBS C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 N

All 11.4 7.5 11.8 9.0 11.3 −3.8 0.4 −2.4 −0.1 6.9 6.3 5.6 5.1 19,149

Urban 11.3 7.9 12.2 9.2 11.7 −3.4 0.9 −2.1 0.4 6.6 6.4 5.5 5.2 6,137

Suburban 12.3 8.4 12.6 9.9 12.2 −3.9 0.2 −2.4 −0.2 7.2 6.5 5.9 5.4 7,877

Rural 10.0 5.8 10.1 7.2 9.6 −4.2 0.2 −2.8 −0.4 6.7 5.8 5.3 4.6 5,059
aOBS: AirNow observations; RMSE: root-mean-square error; N: number of data pairs. The 24 h average PM2.5 is calcu-

lated from 12Z to 11Z to the next day. Note that the total data pairs here do not add up to 19,149, since several AirNow
monitoring sites have an unknown category.

Figure 7 shows the time series of the mean 24 h averaged PM2.5 in the six predefined U.S. regions shown
in Figure 1: the Pacific Coast, Rocky Mountain, Southeast, Lower Middle, Upper Middle, and Northeast. The
evaluation statistics for the six regions are listed in Table 3. Underestimation happens in all regions over the
whole time period. It is most severe in the Southeast region, with a mean bias of −4.8 μg/m3. If normalized by
the regional mean observation, the Rocky Mountain region has the worst relative bias,−43%. In spite of these
large biases, daily variations are mostly captured, as in the Southeast and Northeast regions. When comparing
results from the four cases, Figure 7 shows that the regional results agree with the overall feature observed
earlier for the CONUS results. Assimilating MODIS AOD alone, case C1, tends to overadjust and reverse the
underestimation into an overestimation of PM2.5. In four of the six regions, C1 results in a positive PM2.5 bias.
Only case C2, assimilating AirNow PM2.5 observations, mitigates the severe underestimation in all the regions,
but it still ends up with significant underestimation. In five of the six regions, C2 has smaller mean RMSEs
than does C1, as evaluated by the 24 h averaged PM2.5 measurements. Except for the Lower Middle region,
C1 results in smaller RMSEs than the baseline case after assimilating the MODIS AOD alone. When both the
MODIS AOD and AirNow observations are assimilated, C3 generates the best results, as measured by both the
mean bias and the RMSE.

The two days in Figure 7, 8 and 20 July 2011, are chosen to show how assimilating MODIS AOD and AirNow
observations affects the CMAQ simulation of PM2.5. On 8 July, with MODIS AOD assimilated, cases C1 and
C3 agree much better with the observations than does the baseline case C0 or case C2 which only assimi-
lates AirNow measurements. On 20 July, cases C1 and C3 significantly overestimate the PM2.5 in the Northeast
region. Assimilated Terra and Aqua AOD observations for both days and for 1 day prior are shown in Figure 8.
Figure 9 shows the PM2.5 measurements at 06Z and 12Z on these two days, along with the PM2.5 results from
the baseline case C0. Although the AOD observations have gaps in coverage, they cover many more grid cells
than the AirNow stations. Figures 10 and 11 show the simulated AOD at 17Z and PM2.5 at 18Z for cases C0–C3,
on 8 and 20 July, respectively. It is apparent that the spatial patterns of the simulated AOD at 17Z and PM2.5

at 18Z are highly correlated. For both days, the baseline case shows the lowest simulated AOD and PM2.5.

Table 3. Evaluation Statistics of 24 h Average PM2.5 in the CONUS and the Six Predefined U.S. Regions Shown in Figure 1a

Mean (μg/m3) Bias (μg/m3) RMSE (μg/m3)

Region OBS C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 N

PC 7.6 4.5 8.4 5.5 7.7 −3.1 0.9 −2.1 0.1 5.8 5.0 4.6 3.9 4627

LM 10.4 6.0 9.1 7.3 9.3 −4.4 −1.3 −3.2 −1.2 6.3 5.0 5.1 4.3 2029

SE 13.7 8.9 13.8 11.0 13.5 −4.8 0.2 −2.7 −0.2 7.5 6.1 5.6 4.9 3437

RM 7.4 4.2 9.9 5.0 8.4 −3.2 2.5 −2.3 1.1 6.1 6.7 5.5 5.2 2698

UM 15.6 11.7 14.6 13.5 14.9 −3.9 −0.9 −2.0 −0.7 8.4 7.7 7.0 6.7 3407

NE 14.1 10.1 14.9 11.7 14.4 −3.9 0.9 −2.4 0.3 7.0 6.8 5.4 5.4 2951
aPacific Coast (PC), Rocky Mountain (RM), Southeast (SE), Lower Middle (LM), Upper Middle (UM), and Northeast (NE);

OBS: AirNow observations; RMSE: root-mean-square error; N: number of data pairs. The 24 h average PM2.5 is calculated
from 12Z to 11Z to the next day.

CHAI ET AL. ASSIMILATING AOD AND PM2.5 WITH CMAQ 5407



Journal of Geophysical Research: Atmospheres 10.1002/2016JD026295

Figure 7. Time series of mean 24 h averaged PM2.5 in the six predefined U.S. regions shown in Figure 1, i.e., Pacific Coast
(PC), Rocky Mountain (RM), Southeast (SE), Lower Middle (LM), Upper Middle (UM), and Northeast (NE). The 24 h average
PM2.5 is calculated from 12Z to 11Z to the next day.

Case C2, with AirNow PM2.5 observations assimilated 4 times a day, shows elevated levels of both AOD and
PM2.5, while cases C1 and C3 have much higher AOD and PM2.5 after the MODIS AOD retrievals are assimilated
twice a day.

On 8 July, the baseline case underestimates surface PM2.5 at almost all stations. After assimilating AOD obser-
vations, C1 has PM2.5 agreeing well with the observations at most stations. This is particularly true in the
Southeast region where several high PM2.5 measurements are well captured. Figure 8 shows that both Terra
and Aqua recorded high AOD values in Georgia and South Carolina on 7 July. On 8 July, although valid AOD
observations in the region are limited, high AODs can still be seen in the same area. Note that the Aqua AODs
on 8 July have no effect on PM2.5 at 18Z on 8 July and they are only shown as references. In the Northeast
region, C1 has much higher simulated AOD values as well as elevated PM2.5 values. However, several high
PM2.5 measurements in the southeast Pennsylvania, Maryland, and New Jersey area are not predicted by the
model. These high PM2.5 measurements are also interspersed with several medium-level measurements. It is
extremely difficult to capture such spatial variability using the current model at 12 km resolution. Figure 8
shows that the AOD observations in the area have gaps and the recorded AOD values are not as high as those
in the Southeast area. Case C2 shows slightly improved PM2.5 at most stations. However, the changes after
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Figure 8. MODIS AOD on 7, 8, 19, and 20 July 2011. Both (left column) Terra and (right column) Aqua are shown.
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Figure 9. AirNow observations at (left column) 6Z and (right column) 12Z on (top row) 8 July and (bottom row) 20 July. CMAQ PM2.5 of the baseline case C0 is
also shown.

assimilating PM2.5 observations are modest compared to the results of integrating AOD observations in C1.
The latest observation inputs that affect the PM2.5 at 18Z on 8 July are at 6Z and 12Z on the same day, shown
in Figure 9. These appear to be quite different from the PM2.5 at 18Z, especially for high PM2.5 measurements.
Two stations in central Georgia measured high PM2.5 at 12Z. These measurements probably contribute to the
slightly increased PM2.5 at 18Z in the surrounding region. However, they did not lead to any high PM2.5 values
at 18Z that were measured by several stations in the region. When both AOD and AirNow observations are
assimilated, the PM2.5 results of C3 at 18Z resemble case C1. These results are particularly affected by the fact
that all aerosol components were adjusted according to Terra AOD just 1 h before, at 17Z. The effect of the
PM2.5 integration at 12Z is hardly noticeable after 6 h. In an area with dense AirNow station distribution, such
as in the San Francisco Bay Area, improvement of case C3 over case C1 can be detected.

Figure 7 shows that C1 and C3 predicted a peak mean 24 h average PM2.5 in the Northeast region on 20 July,
while the AirNow surface observations show a peak on the next day with a lower value. This day is chosen
to demonstrate that assimilating AOD using the current approach can lead to large errors in certain circum-
stances. High AOD were observed by both Terra and Aqua mainly over Ontario, Canada, and upper New York
state on 19 July, as shown in Figure 8. On 20 July, the high AODs are mostly in Quebec, Canada, and the
New England area of the U.S. However, most AirNow stations in the Northeast region only recorded moderate
PM2.5 readings at 06Z, 12Z, and 18Z on 20 July, while high PM2.5 were observed at several scattered locations
(see Figures 9 and 11). As a result, the integration of the AOD observations generated a large overesti-
mation of surface PM2.5 by C1 and C3 in a large portion of the NE region, as shown in Figure 11. The
observed high AOD values were caused by smoke plumes originating from the wildfires over northwestern
Ontario occurring between 17 and 19 July 2011 [Palmer et al., 2013; Griffin et al., 2013; Franklin et al., 2014;
Sofowote and Dempsey, 2015]. It is likely that the biomass emitted from the wildfires was injected into the
upper troposphere and stayed aloft during transport. Thus, the event well captured by the MODIS instru-
ments was not detected by the ground instruments until further downwind. In such events, assigning the
observed AOD uniformly throughout the vertical column caused a large overestimation of surface PM2.5
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Figure 10. CMAQ simulated (left column) AOD and (right column) surface PM2.5 of cases C0-3 (top to bottom) on 8 July 2011. AirNow stations are shown as
circles, and the measurement values are indicated by the filling color following the same code as the PM2.5 contours.
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Figure 11. CMAQ simulated (left column) AOD and (right column) surface PM2.5 of cases C0-3 (top to bottom) on 20
July 2011. AirNow stations are shown as circles, and the measurement values are indicated by the filling color following
the same code as the PM2.5 contours.

in cases C1 and C3 here. When there are PM2.5 measurements around the AOD observations, Tang et al.
[2015] limited the aerosol adjustment based on AOD assimilation to the region above the boundary layer.
This approach is considered a little arbitrary and not adopted here. The distribution of the airborne mass indi-
cated by AOD observations can be assisted by a smoke-plume model, especially when the sources are well
known. For instance, Sofowote and Dempsey [2015] used the Hybrid Single Particle Lagrangian Integrated
Trajectory (HYSPLIT) model [Draxler and Hess, 1998] and the NOAA’s Global Data Assimilation System (GDAS)
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[Kleist et al., 2009] meteorological data to investigate this exact event, explaining the high PM2.5 episodes
observed at five surface stations in southeast Canada.

Other than in the Northeast region, the assimilation of AOD observations proves to be beneficial, especially in
the Southeast region. In Figure 8, both Aqua on 19 July and Terra on 20 July show high AODs in the Southeast
region. These are quite consistent with the surface PM2.5 measurements at 12Z and 18Z on 20 July shown in
Figures 9 and 11, respectively. AOD assimilation helps cases C1 and C3 generate PM2.5 better matching the
AirNow observations in these regions at 18Z on 20 July 2011, as shown in Figure 11. With only PM2.5 assim-
ilated, C2 changes little over the baseline case. Underestimation is slightly mitigated in southern California,
Lake Michigan, and on the border between Virginia and North Carolina. Similarly to 8 July, case C3 here is
almost indistinguishable from C1. There are still some noticeable changes, such as the reduced PM2.5 in upper
Lake Michigan in case C3.

4. Summary and Discussion

Using a simple optimal interpolation method, the MODIS AOD and AirNow PM2.5 measurements were assim-
ilated into the CMAQ model over a 30 day test period in July 2011. The results show that assimilating either
the MODIS AOD or the AirNow PM2.5 helps PM2.5 predictions over the entire 30 days, with the configuration
that assimilates observations from both sources achieving the best results as measured by the daily averaged
and domain-averaged biases and RMSEs calculated using the unassimilated or not-yet-assimilated AirNow
PM2.5 observations. For the test period, assimilating total AOD observations proves to be more beneficial in
correcting the PM2.5 underestimations than assimilating the AirNow PM2.5 measurements directly. This is con-
sistent with the results presented by Schwartz et al. [2012] using WRF-Chem model and 3DVAR method over
the CONUS for a 44 day summer period in 2010. The better spatial coverage of the MODIS AOD observations
is probably the main reason for its larger effect in the assimilation tests.

The simple approach of applying AOD scaling factors uniformly throughout the vertical column proves very
effective most of the time during the test period. However, some high-AOD events are caused by aerosols
in the middle of the air column, such as smoke plumes resulting from certain large wildfires. In such cases,
distributing the observed air mass vertically according to the original model’s vertical profile is invalid and
will substantially overestimate surface PM2.5. This is demonstrated by the high-AOD event in the Northeast
U.S. that was caused by the widespread wildfires in northwestern Ontario between 17 and 19 July 2011.
When the source locations are known, a separate Lagrangian dispersion model, such as the HYSPLIT model,
can help better define the vertical distribution of the unaccounted aerosol mass detected by space-borne
instruments.

In the current method, the composition of aerosol species is kept intact. The modification of the various
aerosol species using a single scaling factor was chosen for its simplicity. However, it is possible to adjust the
aerosol species differently using their respective Jacobian components. Liu et al. [2011] adjusted the concen-
tration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model
by assimilating the MODIS AOD observations and then initialized the Weather Research and Forecasting/
Chemistry (WRF/Chem) model for improved aerosol analyses and forecasts. However, such a practice may risk
introducing too many degrees of freedom to the unknowns that are difficult to determine without the ready
availability of additional observations of the aerosol components.

The current procedure improves PM2.5 predictions by modifying the state variables. Although the model
“forecast” periods are no more than 21 h before assimilating newly available data, accumulative impacts of
the assimilation on the forecast are clearly shown. Throughout the entire procedure, the key model param-
eters and the emission sources are unchanged. While this allows the assimilation scheme to be flexible and
allows the model to be modified independently, it suffers the drawback of freely grown model errors due to
inherent deficiencies. Among the sources of model error, the emission terms derived from the often outdated
emission inventories may be the most uncertain. These can certainly benefit from being constrained by the
observations. For instance, the exaggerated diurnal profiles shown by the CMAQ PM2.5 results are likely caused
by temporal profiles of the emission sources, PBL height, or removal processes and cannot be corrected by
the assimilation scheme implemented here. Tong et al. [2012] discussed a promising future improvement to
the aerosol forecasts that could be achieved by adjusting the emission terms using the observations. In this
study, the error statistics are kept constant without temporal or spatial variations. Tang et al. [2015] applied
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“dynamic uncertainties” and showed improvement over the constant statistics. Implementing more realistic
error statistics will be explored. Assimilating MODIS observed radiance instead of AOD data has also been
shown to be promising [Xu et al., 2013] and will be investigated in the future.
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